If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+138x-4761=0
a = 1; b = 138; c = -4761;
Δ = b2-4ac
Δ = 1382-4·1·(-4761)
Δ = 38088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{38088}=\sqrt{19044*2}=\sqrt{19044}*\sqrt{2}=138\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(138)-138\sqrt{2}}{2*1}=\frac{-138-138\sqrt{2}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(138)+138\sqrt{2}}{2*1}=\frac{-138+138\sqrt{2}}{2} $
| 0=-0.07x^2+x+2.2 | | -32-17-2z=-3 | | 3x+4=2-6x | | 3(10-4a)=2(4-7a | | 3(3x+5)=7(x+4 | | 4x-6=6x+9 | | 4x-6=6+19 | | 7(b-8)=3(b+12 | | 0=-2x^2-16x-27 | | 10a-24=8a+16 | | 19=16+(n-1)7 | | (2x+1)=(5x+1) | | X=2.1x(-9.1) | | 19=16+7n-7 | | T^2+8t-376=0 | | 4/9=x/32 | | x+x^2+2=4 | | 10/4=x/14 | | 10/14=x/14 | | 6/7=4x/56 | | 0=1/2(x+2)^2-1 | | 1/2v+11/12-11/4v=-5/12 | | 110=3x^2-2x | | 0.5v+0.917-1.25v=-0.417 | | 80=-4.9x^2+20x+70 | | 117=(3x+1)(2x+1) | | 2+5x−9=3x+2(x−7) | | 2/(x+3)-2x+3/(x-1)=6x-5/(x^22x-3) | | 2/(x+3)-2x3/(x-1)=6x-5/(x^2+2x-3) | | 2/(x+3)-2x3/(x-1)=6x-5/(x^22x-3) | | 7(7−3x)=−56 | | 0=-16t^2+20t-6 |